
Journal of Neural Engineering

PAPER

Multi-scale discriminative regions analysis in FDG-
PET imaging for early diagnosis of Alzheimer’s
disease
To cite this article: Jin Zhang et al 2022 J. Neural Eng. 19 046030

 

View the article online for updates and enhancements.

You may also like
Predictive modeling of outcomes following
definitive chemoradiotherapy for
oropharyngeal cancer based on FDG-PET
image characteristics
Michael R Folkert, Jeremy Setton, Aditya
P Apte et al.

-

Multiparametric cardiac 18F-FDG PET in
humans: pilot comparison of FDG delivery
rate with 82Rb myocardial blood flow
Yang Zuo, Javier E López, Thomas W
Smith et al.

-

A radiomics model from joint FDG-PET
and MRI texture features for the prediction
of lung metastases in soft-tissue sarcomas
of the extremities
M Vallières, C R Freeman, S R Skamene
et al.

-

This content was downloaded from IP address 68.181.126.124 on 22/09/2022 at 18:33

https://doi.org/10.1088/1741-2552/ac8450
https://iopscience.iop.org/article/10.1088/1361-6560/aa73cc
https://iopscience.iop.org/article/10.1088/1361-6560/aa73cc
https://iopscience.iop.org/article/10.1088/1361-6560/aa73cc
https://iopscience.iop.org/article/10.1088/1361-6560/aa73cc
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/1361-6560/ac15a6
https://iopscience.iop.org/article/10.1088/0031-9155/60/14/5471
https://iopscience.iop.org/article/10.1088/0031-9155/60/14/5471
https://iopscience.iop.org/article/10.1088/0031-9155/60/14/5471
https://iopscience.iop.org/article/10.1088/0031-9155/60/14/5471
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssB60SX8QqE36glRdwlNe6FdonO7CLcFx05J8c22dV2nXxkvs6uUEJJk2A0svyJCrFqAcyw3dcyHgJZo6pPP3NWk2SRYFQ-pkqc4U_A3RklkkE39mKWnfjad8Bw5eLXgESD7cZqZsQKYM6HKhFGRXLduDkfMCvLcdF6o9N1qf1I-jQoxXJPcu00abiGIaohqvvkZ3cBYP-kU_zFUGTsKi5hpU4bLjSQVjGgBuEf0r0jIAaF0JFtL5sGs2hhrEt0xDNeT2QeZ6P3OgKm_LULl7LSdjfSdUQ34igUNrYbSP8yhg&sai=AMfl-YQRZrrL7jYIO9712lamPf5xodKsAYPq5vlT3wQlbFWVmAbuhSLnrgSa90b_WERzWBYpWKm7JdRRsZfF15M&sig=Cg0ArKJSzKX8fM2d9v0g&fbs_aeid=[gw_fbsaeid]&adurl=https://www.edinst.com/products/


J. Neural Eng. 19 (2022) 046030 https://doi.org/10.1088/1741-2552/ac8450

Journal of Neural Engineering

RECEIVED

31 March 2022

REVISED

6 July 2022

ACCEPTED FOR PUBLICATION

26 July 2022

PUBLISHED

9 August 2022

PAPER

Multi-scale discriminative regions analysis in FDG-PET imaging for
early diagnosis of Alzheimer’s disease
Jin Zhang1, Xiaohai He1,∗, Linbo Qing1, Yining Xu1, Yan Liu2 and Honggang Chen1

1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic of China
2 Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu
610014, Sichuan, People’s Republic of China

∗ Author to whom any correspondence should be addressed.

E-mail: hxh@scu.edu.cn

Keywords: Alzheimer’s disease, fluorodeoxyglucose positron emission tomography, artificial intelligence, medical image processing,
mild cognitive impairment

Abstract
Objective. Alzheimer’s disease (AD) is a degenerative brain disorder, one of the main causes of
death in elderly people, so early diagnosis of AD is vital to prompt access to medication and
medical care. Fluorodeoxyglucose positron emission tomography (FDG-PET) proves to be
effective to help understand neurological changes via measuring glucose uptake. Our aim is to
explore information-rich regions of FDG-PET imaging, which enhance the accuracy and
interpretability of AD-related diagnosis. Approach. We develop a novel method for early diagnosis
of AD based on multi-scale discriminative regions in FDG-PET imaging, which considers the
diagnosis interpretability. Specifically, a multi-scale region localization module is discussed to
automatically identify disease-related discriminative regions in full-volume FDG-PET images in an
unsupervised manner, upon which a confidence score is designed to evaluate the prioritization of
regions according to the density distribution of anomalies. Then, the proposed multi-scale region
classification module adaptively fuses multi-scale region representations and makes decision
fusion, which not only reduces useless information but also offers complementary information.
Most of previous methods concentrate on discriminating AD from cognitively normal (CN), while
mild cognitive impairment, a transitional state, facilitates early diagnosis. Therefore, our method is
further applied to multiple AD-related diagnosis tasks, not limited to AD vs. CN.Main results.
Experimental results on the Alzheimer’s Disease Neuroimaging Initiative dataset show that the
proposed method achieves superior performance over state-of-the-art FDG-PET-based
approaches. Besides, some cerebral cortices highlighted by extracted regions cohere with medical
research, further demonstrating the superiority. Significance. This work offers an effective method
to achieve AD diagnosis and detect disease-affected regions in FDG-PET imaging. Our results
could be beneficial for providing an additional opinion on the clinical diagnosis.

1. Introduction

Alzheimer’s disease (AD) is a degenerative and irre-
versible brain disorder that is the most common type
of dementia [1]. Approximately 90 million people
worldwide are currently diagnosed with AD, and it
is predicted that 300 million people will develop AD
worldwide by 2050 [2, 3]. Mild cognitive impairment
(MCI) is generally regarded as the transition from
cognitively normal (CN) to AD, and over 33% of
MCI patients would progress to AD within five or

more years [4]. AD brings heavy economic and spir-
itual burdens to patients, families, and society [5].
Presently, there is no curative treatment for AD, while
the progression may be slowed through treatment,
such as medications, exercise, and memory train-
ing [6]. In this regard, early detection and accurate
diagnosis of AD are critical for delaying the disease
progression and improving the general well-being of
patients [7].

Improvements within medical imaging have cre-
ated new opportunities regarding both diagnosing
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and understanding many types of neurodegener-
ative diseases [8, 9], one of which is AD. Since
various neuroimaging technologies can differenti-
ate neuropathological alterations, they have been
widely used for AD diagnosis [10–15]. Fluorodeoxy-
glucose positron emission tomography (FDG-PET)
imaging is one of the effective functional biomark-
ers for AD diagnosis by indicating glucose meta-
bolism activity and distribution. Since patients have
been shown to have severe abnormalities in gluc-
ose metabolism [16–19], FDG-PET can be used to
detect or locate regions particularly affected by the
disease, which in turn helps physicians to diagnose
AD/MCI. Manual evaluation of brain FDG-PET
images remains qualitative and operator-dependent,
which is time-consuming and expensive.

Recently, various computer-aided diagnosis tech-
niques have been proposed for the AD diagnosis
based on FDG-PET imaging to improve the accur-
acy. These approaches could be categorized into two
groups according to the feature representation. One
is based on machine learning [20–24] that requires
hand-crafted features, which is usually divided into
two stages: feature extraction and classification. Pan
et al [25] devised a multilevel feature representa-
tion containing the features of regions and their
connectivity to diagnose AD. Gray et al [26] pro-
posed a regional feature extraction method that util-
ized clinical data and FDG-PET imaging to improve
the performance of AD diagnosis. The other is
based on deep learning [27–30], which automatic-
ally learns the features to represent FDG-PET data.
Deep learning-based approaches can be roughly clas-
sified into three types based on the input type:
two-dimensional (2D) slice-based methods, three-
dimensional (3D) subject-basedmethods, and region
of interest (ROI)/patch-based methods.

1.1. 2D slice-based methods
This kind of method generally extracts 2D slices from
3D FDG-PET scans [31], which are then provided
into the 2D convolutional neural network (CNN)
model. Thanks to the success of 2D CNN in nat-
ural image classification, the existing CNN is util-
ized in a transfer learning fashion [32]. Pan et al
[33] developed a separable convolution network to
extract complement information from slices of FDG-
PET scans in three views for AD diagnosis. Ding et al
[32] divided the FDG-PET scan into 16 evenly spaced
sections and then passed them into the InceptionV3
architecture to learn the general features for AD clas-
sification. The limitation of these algorithms is that
FDG-PET scan is 3D while slices are processed inde-
pendently, which may lead to the loss of 3D informa-
tion and data leakage.

1.2. 3D subject-based methods
With the development of high-performance comput-
ing resources, more and more researches focus on

3D subject-based methods [28, 30]. Islam and Zhang
[34] proposed a 3D deep network using whole-brain
PET scans as input and employed various visualiz-
ation techniques to assist in understanding the net-
work behavior in AD diagnosis. Yee et al [28] presen-
ted a 3D CNN model with residual connections that
achieved superior performance in AD diagnosis. The
superiority of this method is the complete integration
of 3D information, since the input is the whole FDG-
PET scan. However, there are more parameters to be
learned in the training process, which increases the
risk of overfitting.

1.3. ROI/patch-based methods
Methods belonging to this group typically divide the
FDG-PET scan into smaller regions as input [27, 35].
The whole FDG-PET scan includes parts of the brain
unaffected by AD, which are not informative. This
problem can be overcome by selecting and con-
structing a set of 3D patches/regions from the FDG-
PET scan to focus on regions that are known to be
information-rich. By extracting ROIs from 3D PET
images by atlas, Guo et al [36] designed a hierarch-
ical graph convolution network to conquer its draw-
back on the Euclidean grid in ADdiagnosis. Themain
disadvantage of these methodologies is that they con-
sider only a few patches/regions, whereas abnormal
changes in patients span multiple brain areas.

There are still limitations in the performance and
interpretability of AD diagnosis based on FDG-PET
imaging. First, AD is believed to affect different brain
regions discriminatively. Therefore, existing studies
based on the full-volume FDG-PET images for AD
diagnosis may extract the redundant information,
leading to overfitting of the model and thus reducing
diagnostic performance. This problem can be avoided
by focusing on the AD-affected regions of FDG-PET
images. However, the FDG-PET scans from the public
dataset Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [37] only provide image-level labels, without
the pixel-level labels that are manually labeled. Thus,
it remains a challenging task to automatically identify
and analyze information-rich regions of FDG-PET
scans without prior information. Also, how to effect-
ively fuse the information of discriminative regions
for AD diagnosis is also one of the current research
issues. Second, there is a lack of clear understand-
ing of why and how deep neural networks perform
well in AD diagnosis tasks. So, the application of AD
diagnosis methods based on deep learning requires
enhanced interpretability. Third, most of the previ-
ous research only pay attention to AD vs. CN classi-
fication, whereas MCI is recognized as a transitional
state that is critical for AD diagnosis. Further invest-
igation is clearly needed for other two-class classific-
ation tasks (AD vs. MCI and MCI vs. CN) and the
multi-class classification task (AD vs. MCI vs. CN).

To overcome the above limitations, we propose a
novel framework in this paper for the early diagnosis
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of AD based on multi-scale discriminative regions in
FDG-PET imaging. Specifically, a multi-scale region
localization (MSRL) module is proposed to auto-
matically locate the disease-affected regions in full-
volume FDG-PET images without access to pixel-
level labels, and select the optimal regions according
to the designed confidence score. Moreover, to fur-
ther mine the effective information of discriminative
regions, a multi-scale region classification (MSRC)
module is designed, in which region-level feature rep-
resentations are jointly learned and adaptively fused
and decision fusion is further performed to improve
the performance of AD diagnosis. To fully evalu-
ate the proposed framework and consider all disease
states during the AD development, we apply it in
multiple AD-related classification problems, includ-
ing multi-class and three two-class classification
tasks.

To sum up, the main contributions of this study
are summarized as follows:

• To improve the performance and interpretabil-
ity of AD diagnosis, we propose a novel frame-
work to take account of multi-scale discriminative
regions jointly with an expectation to be comple-
ment mutually, thus offeringmore information. To
our best knowledge, this is the first report of solv-
ing AD vs. CN, AD vs.MCI,MCI vs. CN andADvs.
MCI vs. CN classification tasks based on FDG-PET
images.

• AnMSRLmodule is proposed to automatically loc-
ate disease-related discriminative regions in full-
volume FDG-PET images based on saliency maps
without prior information. On this basis, a confid-
ence score is designed to evaluate the confidence
and prioritization of the extracted regions, further
selecting the optimal regions.

• To reduce the redundant information of disease-
affected regions and provide complementary
information, an MSRC module is proposed that
dynamically controls the contributions of different
regions through an adaptive fusion gate.

• We comprehensively evaluate the proposed
method on the public dataset ADNI for multiple
AD-related classification tasks, and experimental
results show that it yields superior performance
compared with state-of-the-art (SOTA) methods.
Furthermore, some disease-affected regions of the
cerebral cortex highlighted by extracted regions
cohere with medical research, further demonstrat-
ing its superiority.

The remaining of this paper is organized as
follows. Section 2 describes the dataset used for
evaluation and the proposed method in detail. In
section 3, we report and analyze the experimental res-
ults. Section 4 investigates the influence of several key
components of the proposed method. Finally, a con-
clusion is given in section 5.

2. Materials andmethods

2.1. Dataset
2.1.1. Data acquisition
FDG-PET scans used in this paper come from the
ADNI [37] dataset, which is the largest publicly avail-
able dataset for neuroimaging-based AD research.
Totally, 1732 FDG-PET scans of 873 subjects con-
stitute the experimental dataset. The disease state of
collected FDG-PET scans is categorized into three
classes: AD, MCI, and CN. Each subject is scanned
on at least one visit, which means that the scans
from one subject have a unique subject ID and dif-
ferent session ID. The scans are split by subject ID
into training, validation and testing sets, and their
demographic and clinical information is shown in
table 1. The data is split before preprocessing to pre-
vent the data leakage mentioned in AD diagnosis
studies based on MRI scans [38], which has been
demonstrated to improve the diagnosis performance
significantly [39, 40]. Data leakage is discussed for the
first time, to the best of our knowledge, for AD dia-
gnosis based on FDG-PET scans. Mini-mental state
examination (MMSE), global clinical dementia rat-
ing (CDR), and clinical dementia rating scale sum of
boxes (CDR-SOB) scores are clinician-rated methods
for cognitive dysfunction. These scores are reported in
terms of mean (standard deviation), mainly utilized
for the balanced data partitioning with similar distri-
butions of scales between the training, validation and
testing sets.

2.1.2. Data preprocessing
For this study, the selected FDG-PET scans are pre-
processed by performing spatial normalization, res-
ampling, intensity normalization and data augment-
ation. We use the Clinica software platform [41]
developed by ARAMIS Lab to achieve the data pre-
processing, which supports Functional MRI of the
Brain Software Library (FSL), statistical parametric
mapping (SPM), and FreeSurfer [42]. The input is
the FDG-PET images transformed to the Brain Ima-
ging Data Structure format. The FDG-PET scans
are spatially normalized into Montreal Neurolo-
gical Institute space using the Diffeomorphic Ana-
tomical Registration using ExponentiatedLie algebra
(DARTEL) deformation model of SPM, and then
are resized to 128 × 128 × 128 voxels along sagittal,
coronal, and axial dimensions respectively to reduce
computational cost. Moreover, the intensity normal-
ization is done by using the min-max normalization.
Data augmentation on FDG-PET scans is completed
by Gaussian blurring with σ having a uniform range
of 0–1.5.

2.2. Overview of the proposed framework
In this paper, we present a novel framework to
tackle the problem of FDG-PET-based AD dia-
gnosis. As shown in figure 1, our proposed method
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Table 1. Summary of demographics, MMSE, CDR, and CDR-SOB of the dataset.

Split Diagnosis Subjects Scans Age MMSE CDR CDR-SOB

Training CN 184 411 76.01(6.37) 28.98(1.88) 0.02(0.17) 0.10(0.40)
MCI 347 673 73.53(7.84) 27.51(2.75) 0.49(0.13) 1.58(1.06)
AD 146 292 75.24(7.12) 21.72(4.20) 0.90(0.42) 5.30(2.43)

Validation CN 27 56 76.98(5.50) 29.03(1.21) 0.00(0.16) 0.11(0.31)
MCI 45 101 74.28(7.74) 27.61(3.40) 0.48(0.19) 1.61(1.03)
AD 13 18 74.00(7.34) 21.78(3.90) 0.83(0.37) 5.63(2.88)

Testing CN 34 64 74.82(6.11) 29.12(1.14) 0.03(0.12) 0.08(0.31)
MCI 54 82 73.37(6.47) 27.35(2.22) 0.48(0.20) 1.49(1.02)
AD 23 35 72.16(7.99) 22.34(3.46) 0.85(0.31) 5.04(2.04)

Figure 1. Overview of the proposed method.

mainly consists of two parts: the MSRL module and
the MSRC module. Briefly, multi-scale discrimin-
ative regions are extracted by the MSRL module
(section 2.3) from the full-volume PET imaging in an
unsupervised manner based on category-level sali-
ency maps obtained by score-weighted class activ-
ation mapping (Score-CAM) [43]. Particularly, a
confidence score is designed to measure the dens-
ity distribution of anomalies in the regions and fur-
ther evaluate the confidence and prioritization of the
extracted regions to select the optimal regions, which
are then fed into the MSRC module (section 2.4) to
extract feature representations and classification out-
puts for these regions. At the same time, multi-scale
regions are fused by the adaptive fusion method to
aggregate useful information together and then are
processed to obtain the fusion feature representation
and classification output. Finally, multiple classific-
ation outputs are performed by the decision-level
fusion to obtain the final result.

2.3. MSRL
Commonly, an original image contains only some
regions perceived as important, which are called
ROIs. In AD diagnosis based on medical imaging,

ROIs are the disease-related regions that provide
effective information. The goal of ROI extrac-
tion is to preserve specific brain regions that
contain discriminative information, thereby reducing
redundant information. Even if experts can manually
label the ground-truth regions within nuclear medi-
cine, it would be very time-consuming. Therefore,
we propose the MSRL module based on unsuper-
vised saliency-guided localization for region identi-
fication without the requirement of manual labeling.
The MSRL module consists of four sequential com-
ponents, i.e. (a) category-level saliency map acquisi-
tion, (b) separation of foreground and background,
(c) location proposal, and (d) region selection.

2.3.1. Category-level saliency map acquisition
Since the visualization results could indicate regions
in the input image that the network focuses on, they
are calculated in this paper by the Score-CAM [43]
algorithm to highlight regions responsible forADdia-
gnosis using a backbone network. The backbone net-
work is 3DResNet-18, which is a deep-learningmodel
for the classification of the original full-volume FDG-
PET scans. Score-CAM performs a linear combina-
tion of activation maps with its forward passing score
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as the weight to obtain the saliency maps, thus elim-
inating the dependence on gradients.

The highlighted areas of activation map Ak are
projected on the input space bymultiplying each nor-
malized activation map with the input image I to
obtain a masked image. The masked image are then
passed to the backbone network f with softmax to get
the scores for each class as follows:

Sk = softmax
(
f
(
Ak ◦ I

))
(1)

where k denotes the kth channel of the activationmap.
The score Sck of the target class c used as weight α

c
k

is therefore described as:

αc
k = Sck (2)

where αc
k captures the importance of the kth activa-

tion map for the target class c.
The final saliency map is the sum across all the

activation maps for the linear combination between
the target class score and each activation map with
rectified linear unit (ReLU), which becomes:

mc = ReLU

(∑
k

αc
kA

k

)
. (3)

For correctly predicted FDG-PET images of dif-
ferent categories in the testing set, there are saliency
maps and the prediction probabilities from the back-
bone network. Based on them, the category-level sali-
ency map for each category is represented as:

Mc =

∑n
i=1 p

c
i × mc

i

n
(4)

where mc
i is the saliency map of sample i from cat-

egory c, pci is the prediction probability of sample i
from category c, n is the total number of samples
belonging to category c, and c ∈ {AD,MCI,CN}.

2.3.2. Separation of foreground and background
Based on the category-level saliency map, we can
further analyze the clues to achieving correct clas-
sification, that is, the glucose metabolism of brain
regions in different categories. In order to highlight
the difference, the separation of foreground and back-
ground helps to focus on highly activated regions
in the category-level saliency map, which is affected
by AD/MCI. The saliency map Mc for category c is
performed by intensity normalization to obtain the
normalized saliency map M ′

c with a range of [0, 1].
Given a quantile threshold 0 < τs < 1, the normal-
ized category-level saliency map M ′

c is divided into
the background (pixels with values less than τs) and
foreground Mf (pixels with values greater than τs).
The threshold value is chosen appropriately with the
purpose of making Mf concentrated in the disease-
related regions, which is associated with the varying
intensities of each M ′

c . Therefore, the threshold τs

can be determined based on the number and size of
regions for eachM ′

c . The separation of the foreground
Mf is described as follows:

Mf(x,y,z) =

{
1, M ′

c (x,y,z) ⩾ τs
0, M ′

c (x,y,z) < τs

}
(5)

where x, y and z represent the coordinates of the axial,
coronal, and sagittal planes, respectively.

2.3.3. Location proposal
After obtaining the foreground Mf , it is clustered
with connected component labeling (CCL), thus the
highly activated regions are segmented in an unsu-
pervisedmanner. CCL groups together pixels belong-
ing to the same connected component, which is the
collection of all pixels in an image that is connected
relative to the defined connectivity. Connected com-
ponents, in a 3D image, are clusters of pixels with the
same value that share edge or vertex. In this paper,
two neighboring pixels in Mf are called connected,
if they both have values of 1, forming a highly activ-
ated region, while background pixels with values of
0 are usually ignored. All connected components in
Mf are extracted and labeled as R′ to represent the
highly activated regions, which are the discriminative
regions associated with AD/MCI.

2.3.4. Region selection
The regions R′ obtained above might have duplicat-
ive information with overlap, so we need to perform
automatic region selection to get the best ROIs with
different scales. Besides, too many regions increase
computational complexity and memory cost, and
cause information redundancy, affecting diagnostic
performance. Non-maximum suppression (NMS)
[44] is widely used to filter the predictions of an object
detector in the object detection task, we thus utilize it
to filter out the overlapping regions combined with
the confidence of regions to obtain the optimal ROIs
R. First, the intersection over union (IoU) is calcu-
lated to measure the overlap between two regions.
A larger IoU represents more overlap between the
two regions. Second, we design a confidence score
measuring the density distribution of high activation
points in a region to represent ROI confidence and
prioritization. A higher score denotes the denser dis-
tribution of discriminative features. The score sk for
the region k is calculated as follows:

sk = α · lg
m∑
i=1

bki /(dis(ik − uk) + β) (6)

where ik and uk represent the high activation point
and central point of region k. dis() refers to the dis-
tance. bki is the value of the high activation point i in
region k. α is the normalized coefficient as 0.25. m is
the total number of pixels in region k. β is used to
avoid dividing by zero, set as 0.1.

5



J. Neural Eng. 19 (2022) 046030 J Zhang et al

Table 2. Details of the obtained multi-scale discriminative regions.

ROIs Coordinates (central point) Size (length, width and height) Confidence score

Region 1 78, 60, 81 60, 60, 60 0.8650
Region 2 70, 55, 66 100, 100, 100 0.8675

Figure 2. Visualization of the obtained multi-scale regions. (a) Region 1. (b) Region 2.

NMS discards the regions with low confidence
score or large overlap while the reserved regions cover
the discriminating information for classification. The
IoU threshold τnms determines that the regions whose
IoU is greater than τnms are removed. The proced-
ure is repeated for each item in the regions until
no more available regions. In this paper, the confid-
ence threshold is 0.70 and the IoU threshold is 0.30.
Finally, the details of the obtained multi-scale dis-
criminative regions with high confidence are shown
in table 2, and the central locations of these regions
are marked with colored dots in axial, coronal, and
sagittal planes, respectively, as displayed in figure 2.

2.4. MSRC
To improve the performance of AD diagnosis by
organically integrating the complementary informa-
tion of the multi-scale regions, we propose MSRC,
which consists of three branches: feature extraction
branch, adaptive feature fusion branch, and decision
fusion branch.

2.4.1. Feature extraction branch
This branch is to learn the representation among the
multi-scale regions. Assuming the set of multi-scale
regions is R = {Ri}ki=1 for an individual FDG-PET
scan, where k is the number of regions. 3D ResNet-
18 [45] is currently a widely used network in nat-
ural image classification and has proven to be suit-
able for medical image classification, so it is adopted
in this study to extract region-level features. Through
3D ResNet-18, each region Ri is embedded into a
b-dimensional vector space (b= 256) to obtain region
representation vi.

2.4.2. Adaptive feature fusion branch
To strengthen distinctive AD-related features by
integrating the region information adaptively, we
introduce a fusion gate to control information flow
as shown in figure 3. The adaptive feature fusion
dynamically controls the contribution of multi-scale
regions and accumulates the distinctiveness derived

Figure 3. Illustration of the adaptive feature fusion.
C represents the channel number.

from each scale as follows, thus improving the classi-
fication performance

gate = σ (W1 [v1,v2]) (7)

ṽ = W2 (gate ◦ [v1,v2]) (8)

where v1 and v2 stand for region representations,
gate is the control gate. σ is sigmoid function and
◦ denotes element-wise product. ṽ represents the
output of the feature fusion branch. W1 and W2 are
weight matrices.

2.4.3. Decision fusion branch
After fusing multi-scale regions, the feature repres-
entation of each single region and the fused feature
representation are independently used as the input of
classification layer to generate prediction results yci ,
which is called decision-level fusion. In real applic-
ations, the importance of regions varies from indi-
vidual to individual. So, it is necessary to fuse each of
the outputs so that the final integration reflects more
accurate results. One simple way to adjust the contri-
bution of each output is to apply the average voting,
in which each output contributes equally to the classi-
fication results. The class label, which has maximum
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score in the above fusion process is selected as the final
prediction, as follows:

ŷ = arg
C

max
c=1

(
1

n

n∑
i=1

yci

)
(9)

whereC is the number of classes, yci represents the pre-
diction result for the cth class, in which i ∈ {1,2,3}
indicates different input.

2.5. Loss function
To assist the training of the MSRC module, we intro-
duce a loss function based on multi-feature learn-
ing. The prediction distributions of region feature
representation vi and fused feature representation ṽ
are substituted into the cross entropy loss function
as components Li and L̃ of the final loss function,
respectively. The learning algorithm is optimized by
minimizing the following loss function:

Lall = λ

(
k∑
i

Li + L̃

)
(10)

where k is the number of discriminative regions. Tun-
ing parameter λ controls the influences of region-
level and fusion-level training losses, empirically set
as 1/(k+ 1).

3. Results

3.1. Implementation details
All the experiments are conducted using the Pytorch
library on a computer with Ubuntu 18.04 operating
system. The proposed framework is implemented by
using Python 3.6 with anNVIDIAGeForce GTX 3090
GPU with 24GB of memory. We perform training by
utilizing the Adam [46] optimizer with a batch size
of 8 for 200 epochs. The initial learning rate is 0.0001,
which is then adjusted according to the cosine anneal-
ing strategy.

3.2. Evaluation criteria
To quantitatively evaluate the results of two-class clas-
sification tasks, five metrics, namely, accuracy (ACC),
sensitivity (SEN), specificity (SPE), F1 score (F1) and
the area under the curve (AUC) are utilized as evalu-
ation criteria. These evaluation metrics are defined as
follows:

ACC =
TP + TN

TP + FP + FN + TN
(11)

SEN =
TP

TP + FN
, SPE =

TN

FP + TN
(12)

F1 =
2 × TP

2 × TP + FN + FP
(13)

where TP, FP, FN, TN are true positive, false positive,
false negative and true negative, respectively.

For the multi-class classification task, nine met-
rics, namely, accuracy (ACC), macro-sensitivity
(SENa), micro-sensitivity (SENi), macro-specificity
(SPEa), micro-specificity (SPEi), macro-F1 (F1a),
micro-F1 (F1i), macro-AUC (AUCa) andmicro-AUC
(AUCi) are utilized as evaluation criteria, which are
defined as follows:

Ba =
1

C

C∑
i=1

B(TPi,FPi,TNi,FNi) (14)

Bi = B

(
C∑

i=1

TPi,
C∑

i=1

FPi,
C∑

i=1

TNi,
C∑

i=1

FNi

)
(15)

where TPi, FPi, FNi and TNi are the true positive,
false positive, false negative and true negative of class
i samples, respectively and C is the number of classes.
B stands for SEN, SPE, F1 and AUC.

3.3. Comparison with other methods
To justify the performance of the proposed method,
the experimental results are compared with SOTA
FDG-PET-based AD diagnosis approaches, as well
as the baseline method using the same experimental
data as our study. Majority of previous studies
[27, 28, 33, 47] only focus ondiscriminatingAD from
CN, whereas MCI as a transitional state is crucial for
AD diagnosis. Further investigation is discussed in
this paper for the two-class classification tasks (AD vs.
CN, MCI vs. AD, MCI vs. CN) and the multi-class
classification task (AD vs. CN vs. MCI).

The SOTA methods for AD vs. CN classification
are divided into feature-based classification methods
and deep learning-based classificationmethods. Since
the FDG-PET scans and preprocessing progress adop-
ted in these studies are not identical and it is not
known whether the data leakage occurred, the com-
parisons are made for reference only. 3D ResNet-18,
a classical CNN for solving classification problems, is
further utilized with the same FDG-PET scans and
preprocessing process as in this paper to make a fair
comparisonwith our proposedmethod. The compar-
ison results of AD vs. CN classification are summar-
ized in table 3. As can be seen, the proposed method,
with an accuracy of 97.83%, is significantly better
(almost 4% higher) than currently available SOTA
methods. Further, our method outperforms ResNet-
18 using the same data with gains of 3.26%, 8.00%,
1.50% and 6.20% regarding ACC, SEN, SPE and F1,
which suggests the proposed framework consider-
ing multi-scale discriminative regions is effective and
reasonable.

The comparison results for MCI vs. AD and MCI
vs. CN are shown in tables 4 and 5, respectively. For
MCI vs. AD classification, the accuracy of ourmethod
is 6.02%higher when compared to the best previously
published method [50]. Compared to ResNet-18,
the proposed framework can improve the diagnostic
accuracy of MCI vs. CN, with an enhancement of
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Table 3. Performance comparison with SOTA methods for AD vs. CN classification. Bold fonts highlight the best performance.

Category Method Subjects

AD vs. CN classification (%)

ACC SEN SPE AUC F1

Feature-based
methods

Padilla et al∗ [20] 53AD+ 52CN 86.59 87.50 85.36 — —
Gray et al∗ [26] 50AD+ 54CN 88.40 83.20 93.60 — —
Li et al∗ [48] 25AD+ 30CN 89.10 92.00 86.00 97.00 —
Pan et al∗ [49] 237AD+ 242CN 94.20 91.45 96.76 97.42 —

Deep learning
methods

Lu et al∗ [27] 226AD+ 304CN 93.58 91.54 95.06 — —
Liu et al∗ [31] 93AD+ 100CN 91.20 91.40 91.00 95.30 —
Yee et al∗ [28] 237AD+ 359CN 93.50 92.30 94.20 97.60 —
BMNet∗ [50] 198AD+ 263CN 89.80 89.28 91.20 92.81 91.11
Huang et al∗ [35] 465AD+ 480CN 89.11 90.24 87.77 92.69 —
Shen et al∗ [47] — 86.60 89.50 85.20 — —
MiSePyNet∗ [33] 237AD+ 242CN 93.13 90.32 95.49 97.11 —
ResNet-18 146AD+ 184CN 94.57 88.00 97.01 98.51 89.80
Ours 146AD+ 184CN 97.83 96.00 98.51 96.78 96.00

The symbol ∗ means just as a reference since the selected experimental data and data preprocessing processes in these

methods are different.

Table 4. Performance comparison with SOTA methods for MCI vs. AD classification. Bold fonts highlight the best performance.

Method Subjects

MCI vs. AD classification (%)

ACC SEN SPE AUC F1

Li et al∗ [48] 25AD+ 29MCI 80.20 80.00 80.00 85.00 —
BMNet∗ [50] 198AD+ 147MCI 81.18 77.53 84.41 81.67 —
ResNet-18 146AD+ 347MCI 84.00 50.00 92.93 85.74 56.52
Ours 146AD+ 347MCI 87.20 80.77 88.89 87.06 72.41

The symbol ∗ means just as a reference since the selected experimental data and data preprocessing

processes in these methods are different.

Table 5. Performance comparison with SOTA methods for MCI vs. CN classification. Bold fonts highlight the best performance.

Method Subjects

MCI vs. CN classification (%)

ACC SEN SPE AUC F1

Li et al∗ [48] 29MCI+ 30CN 65.80 66.00 65.00 72.00 —
ResNet-18 347MCI+ 184CN 68.39 84.27 46.97 69.97 75.38
Ours 347MCI+ 184CN 69.03 77.53 57.58 74.45 74.19

The symbol ∗ means just as a reference since the selected experimental data and data preprocessing

processes in these methods are different.

0.64%, and further achieve a notable improvement
forAUC, i.e. 4.48%. It can be seen that the challenge in
the disease diagnosis is to distinguish adjacent stages.
The results report that the diagnostic accuracy ofMCI
is signally lower than other states. Since MCI is an
intermediate stage between normal aging and AD,
which does not significantly affect the daily life of
patients, it is difficult to diagnose MCI.

The comparison results of AD vs. CN vs. MCI
classification are shown in table 6. The accuracy of
our method using FDG-PET is about 4% higher than
that of ResNet-18. We can also observe that our clas-
sification network performs well in almost all cri-
teria, with SPEa of 78.32% and SPEi of 81.49%, which
are 0.94% and 1.93% higher than that of ResNet-18.
SPE is an important index used to evaluate the per-
formance of accurate diagnosis of AD, which can be
improved by identifying the location and signature
features of AD-related abnormalities. Therefore, the

proposed approach by fusingmulti-scale regions gen-
erally outperforms using full-volume imaging with
redundant information in specific performance. In
summary, our experimental results indicate that the
proposed approach using multi-scale discriminative
regions achieves higher performance in AD diagnosis
as compared to past studies, irrespective of two-class
classification tasks or the multi-class classification
task.

3.4. Visualization of explainable saliency maps
In AD diagnosis, abnormal areas could be more
meaningful for clinicians and researchers. Hence,
we use the Score-CAM [43] to generate explain-
able category-level saliency maps for visualization
by weighted summation of saliency maps of vari-
ous categories in the testing set. Category-level
saliency maps could help to more intuitively dis-
play the typical regions that contribute to disease
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Table 6. Performance comparison for AD vs. MCI vs. CN classification. Bold fonts highlight the best performance.

Method

AD vs. MCI vs. CN classification (%)

ACC SENa SENi SPEa SPEi AUCa AUCi F1a F1i

ResNet-18 59.12 59.37 59.12 77.38 79.56 74.60 76.80 59.34 59.12
Ours 62.98 59.28 62.98 78.32 81.49 76.55 78.82 62.67 62.98

Figure 4. Visualization of explainable saliency maps in the CN category.

Figure 5. Visualization of explainable saliency maps in the MCI category.

prediction, simultaneously improving interpretabil-
ity. Figures 4–6 present the explainable saliency maps
grouped by category respectively. To facilitate obser-
vation, 3D saliency maps from different subjects are
sectioned on three different planes: axial, coronal, and
sagittal planes. As there are too many slices, a dimen-
sion on the plane is selected as the central dimension
and five slices are cut at equal intervals for display.

The saliency maps highlight regions that the clas-
sification network is most susceptible to, which show
the relevance of each voxel for contributing to the
AD diagnosis. The color scale is blue to red, with
high values getting the red color and low values get-
ting the blue color. The higher intensity (red) in the
saliency maps indicates the higher importance of the
region, and some differences between the categories
can be represented by comparing the intensity. As can
be seen from figure 4, for CN subjects, the regions
with high activation are mainly located in the cin-
gulate gyrus, frontal lobe and parietal lobe. The sali-
ency maps for MCI patients indicate that the net-
work pays more attention to the occipital and parietal
lobes, which show relatively specificity for differenti-
ating MCI, as presented in figure 5. It is interesting to
notice that the regions with high activation in figure 6

are the parietal lobe, temporal lobe, and frontal lobe,
suggesting that these regions could serve as distin-
guishing features in the AD diagnosis. By comparing
the explainable saliency maps grouped by category,
we can find that the saliency maps in the AD cat-
egory have a wide range of high activation regions,
indicating that metabolic reduction occurs in mul-
tiple brain areas. The regions with high activation in
the CN category are concentrated and obvious, which
is significantly different from MCI and AD. In con-
trast, the highly activated regions in the MCI cat-
egory are relatively small, which represents that the
metabolic changes are not significant. The findings
are consistent with somemedical research on AD dia-
gnosis, which lays a good foundation for the pro-
posed method based on multi-scale discriminative
regions.

3.5. Ablation study for ROI selection
In the proposed method, the adaptive feature fusion
of multi-scale regions jointly is employed to improve
the diagnosis performance by organically integrating
the complementary information. To compare the per-
formance of each region and verify the effectiveness of
region fusion, the experimental results achieved from
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Figure 6. Visualization of explainable saliency maps in the AD category.

Figure 7. Performance comparison of different ROI selections. (a) AD vs. CN. (b) AD vs. MCI. (c) MCI vs. CN. (d) AD vs. MCI
vs. CN.

the full-volume, ROI 1, ROI 2, and ROIs fusion of
FDG-PET imaging are reported in figure 7.

For AD vs. CN classification in figure 7(a), our
proposed method that fuses multi-scale region rep-
resentations of FDG-PET images obtains the best
performance. Substantial upgrades lie in ACC and
F1, particularly with F1, which is gained by 5.43%
compared to ROI 2. For AD vs. MCI presented in
figure 7(b), the performance of ROIs fusion is sig-
nificantly enhanced concerning ACC, SEN, and F1.
SEN is clearly increased from50.00% (full-volume) to
80.77% (ROIs fusion), and achieves an improvement
of more than 30%. This means that the region fusion
approach focuses on positive samples (AD), result-
ing in an overall performance enhancement. As can

be observed from figure 7(c), for MCI vs. CN clas-
sification, the method fusing multi-scale ROIs yields
consistently better results than other methods. For
example, the ACC and AUC values achieved by our
proposed model are 69.03% and 74.45%, respect-
ively, which are far superior to the method using
ROI 1 (ACC= 66.45% and AUC= 73.05%). From
figure 7(d), we notice that for the multi-class classi-
fication, the proposed method reaches optimal per-
formance in almost all criteria. These results confirm
that exploiting multi-scale discriminative regions
with metabolic reduction can reduce the interference
of useless information and thus improve the per-
formance of AD diagnosis. In general, the method
using full-volume FDG-PET images yields the worse
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Figure 8. Performance comparison of three feature fusion methods in multiple two-class classification. (a) AD vs. CN. (b) AD vs.
MCI. (c) MCI vs. CN.

Figure 9. Performance comparison of three feature fusion methods in the AD vs. MCI vs. CN classification.

performance in terms of various criteria. The likely
reason is that the network learns disturbing features
instead of discriminative features, thus causing over-
all performance degradation. Furthermore, we can
observe that the superiority of using ROI 1 over ROI 2
is particularly obvious in AD vs. CN, while ROI 2 out-
performs ROI 1 in most cases for other classification
tasks. The results further prove that the parietal lobe
and frontal lobe have distinguishing representations
for AD diagnosis, and the temporal lobe also has cer-
tain specificity. And the attention to the occipital lobe
and parietal lobe is valuable for the MCI diagnosis.

3.6. Ablation study for region fusionmethods
We further investigate the influence of the proposed
adaptive feature fusion method on the performance
of AD diagnosis. Besides the fusion gate strategy util-
ized in this paper, namely ‘gate’, there are also two
widely applied methods for feature fusion, i.e. (a) the
concatenation operation that designates a consolid-
ated dimension, and (b) the addition operation that
focuses on the addition of feature maps. Here, we
compare the proposed framework with its two vari-
ants, i.e. ‘concat’ and ‘add’ that employ the concaten-
ation operation and the addition operation for feature
fusion, respectively.

The performance achieved by these feature fusion
methods on two-class classification tasks is repor-
ted in figure 8. We can find that ‘gate’ is superior
to ‘add’ in terms of several criteria, which demon-
strates the effectiveness of our adaptive feature fusion
for AD diagnosis. Specifically, ‘gate’ rises by 2.18%
(ACC), 2.99% (SPE), and 3.69% (F1) in AD dia-
gnosis and 8.99% (SEN), and 2.84% (F1) inMCI dia-
gnosis, compared with ‘add’. Furthermore, the pro-
posed ‘gate’ can achieve satisfactory improvements
in overall performance compared to ‘concat’. For
instance, in AD vs. CN classification, the ACC and
SPE values obtained by ‘gate’ are 97.83% and 98.51%,
respectively, which outperform that of ‘concat’ by a
large margin (ACC= 95.65%, SPE= 95.52%). The
experimental results of AD vs. MCI vs. CN classifica-
tion are illustrated in figure 9. Among the three fusion
methods, the performance of ‘gate’ arrives at the peak
point in most metrics, for example, it holds diversit-
ies of 2.21% and 1.10% to the corresponding slightly
inferior metrics concerning ACC and SPEi. The res-
ults of ablation experiments clearly demonstrate that
the proposed classification method can fuse discrim-
inant information effectively based on the adaptive
gate fusion, thereby improving the overall perform-
ance of AD diagnosis.
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Figure 10. Visualization of category-level saliency maps with different thresholds.

Table 7. Influence of the NMS algorithm for two-class classification tasks. Bold fonts highlight the best performance.

Method

AD vs. CN classification (%) AD vs. MCI classification (%) MCI vs. CN classification (%)

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE AUC F1

Full-volume 94.57 88.00 97.01 98.51 89.80 84.00 50.00 92.93 85.74 56.52 68.39 84.27 46.97 69.97 75.38
w/o NMS 94.57 88.00 97.01 96.06 89.80 86.40 61.54 92.93 86.48 65.31 68.39 75.28 59.09 71.43 73.22
with NMS 97.83 96.00 98.51 96.78 96.00 87.20 80.77 88.89 87.06 72.41 69.03 77.53 57.58 74.45 74.19

4. Discussion

4.1. Analysis of the threshold value τs

In the above-mentioned experiments, we exploit a
fixed threshold (τs = 0.7) for our proposed MSRL
method. Given a threshold value τs, the category-level
saliency map that contains values ranging from 0 to
1 can be divided into background and foreground.
In order to investigate the selection of the appropri-
ate threshold value aiming to make the foreground
regions concentrated in disease-related regions, mul-
tiple values uniformly distributed from 0.5 to 0.9
with a step size of 0.1 are employed for comparative
experiments.

We report the impact of adopting different
threshold values to category-level saliency maps as
illustrated in figure 10. With τs raising, the fore-
ground areas (in white) become lesser and more
pronounced, while the background areas (in black)
increase substantially at the expense of splitting the
foreground areas and losing more pixels. As can be
seen from figure 10, at τs = 0.5 and τs = 0.6, the fore-
ground area is large and still contains a lot of use-
less information. Subtle anomalies within the large
areas may be overwritten by uninformative normal
areas. Also, utilizing large regions could bring a huge
computational burden resulting in affecting the prac-
ticability of the proposed framework in applications.

In addition, when τs is small, the distribution of
foreground area is scattered, which is detrimental to
the localization of discriminant regions. Moreover,
at τs = 0.8 and τs = 0.9, the foreground area is too
small, which means it does not have enough ability to
capture discrimination information from the brain.
Therefore, we select τs = 0.7 as the threshold value,
which is conducive to the further extraction of dis-
criminative regions with appropriate sizes.

4.2. Influence of the NMS algorithm
We further investigate the influence of using the NMS
algorithm on the diagnosis performances achieved by
our proposed method. The proposed method using
NMS indicated ‘with NMS’, is compared with its vari-
ant without NMS, denoted ‘w/o NMS’.

The experimental results as shown in table 7
demonstrate that in two-class classification tasks, ‘w/o
NMS’ yields consistently worse performance com-
pared to ‘with NMS’ in almost all criteria, poten-
tially because (a) there is redundancy in the learned
information, which is easy to lead to overfitting, and
(b) regions with relatively low scores could affect
the overall performance. For instance, for AD vs.
CN classification, ACC and SEN values achieved
by ‘with NMS’ are 97.83% and 96.00%, which are
much better than that of ‘w/o NMS’. Furthermore,
we conduct comparative experiments on AD vs. MCI
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Table 8. Influence of the NMS algorithm for AD vs. MCI vs. CN classification. Bold fonts highlight the best performance.

Method

AD vs. MCI vs. CN classification (%)

ACC SENa SENi SPEa SPEi AUCa AUCi F1a F1i

Full-volume 59.12 59.37 59.12 77.38 79.56 74.60 76.80 59.34 59.12
w/o NMS 60.77 63.25 60.77 78.86 80.39 79.28 80.61 62.09 60.77
with NMS 62.98 59.28 62.98 78.32 81.49 76.55 78.82 62.67 62.98

Figure 11. The FDG-PET images in three planes of different categories. From top to bottom are from the AD patient, MCI
patient, and CN subject. (a) Sagittal plane. (b) Coronal plane. (c) Axial plane.

vs. CN classification task to comprehensively verify
the effectiveness of the NMS algorithm, with res-
ults shown in table 8. We can observe that the pro-
posed method generally outperforms ‘w/o NMS’ in
multi-class classification. The ACC value achieved
by ‘with NMS’ is 62.98%, which is higher than that
obtained by ‘w/o NMS’. The possible reason is that
the NMS algorithm in this study selects regions with
high scores (dense distribution of discriminative fea-
tures) and suppresses redundant regions with low
scores. Besides, the NMS algorithm can reduce irrel-
evant and redundant features and decrease the com-
putational complexity and memory cost during the
training. This further implies that using more ROIs
cannot drastically enhance the performance of AD
diagnosis, but brings about a growth in network para-
meters. In summary, these experimental results fur-
ther prove that the NMS algorithm in this study could
yield a positive influence on the AD diagnosis.

4.3. Analysis of FDG-PET imaging in AD diagnosis
Recently, FDG-PET imaging has made consider-
able contributions to the development of clinical
and methodological research about AD diagnosis. It
demonstrates the level of glucose metabolism in the
brain, which enables high efficiency in forecasting the
occurrence and development of AD as an independ-
ent influencing factor. To verify the effectiveness of
the proposedMSRLmethod, slices sectioned on three
planes (axial, coronal, and sagittal planes) of FDG-
PET images from different categories after pseudo-
color processing are displayed in figure 11 to compare
the glucose metabolic level in different states.

It is generally believed that normal elderly people
have normal glucose metabolism, and 18F-FDG is
symmetrically distributed in bilateral frontal, tem-
poral, and parietal lobes, as shown in figure 11.
Reductions of cerebral metabolism are well estab-
lished in AD [16, 17, 51]. Compared with CN
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subjects, the metabolism in the temporal-parietal
lobe and posterior cingulate gyrus recedes in typical
patients with AD. And as AD progresses, the frontal
lobe might also be affected [52]. Changes in cerebral
metabolism also have been detected in MCI in many
studies [18, 19]. As can be seen from figure 11, MCI
patients have a decrease in cerebral glucose metabol-
ism compared to CN subjects, with a characteristic
regional pattern of the occipital lobe and temporal-
parietal lobe hypometabolism. In comparison with
MCI patients, the range and degree of reduced FDG
metabolism are obviously ascended in AD patients.
The multi-scale discriminative regions we selected
are consistent with previous medical studies, which
further confirms the effectiveness of the proposed
method.

5. Conclusion

In this paper, we propose a novel deep learning
method based on multi-scale discriminative regions
in FDG-PET imaging to deal with the early diagnosis
of AD. First, the disease-affected regions are located
in an unsupervised manner, the priority of which is
then evaluated by the designed confidence score to
further select the optimal multi-scale discriminative
regions. Then, the proposedMSRCmodule is applied
to adaptively fuse feature representations of discrim-
inative regions, which greatly reduces the interfer-
ence information to a great extent and boosts the
interpretability of AD diagnosis. Next, decision-level
fusion is introduced to further improve diagnostic
performance. We evaluate the proposed framework
on multiple AD-related classification tasks, and the
experimental results on the public ADNI dataset
reveal that it is with the great generalization ability
and superior performance. The resultant multi-scale
regions from our approach highlight some disease-
relevant regions of the cerebral cortex, consistent with
the commonly affected regions during AD develop-
ment, further demonstrating the effectiveness of our
proposed method.
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